应用韩信点兵求余数

#math

问:\(123456\cdots787980\div88\)的余数?

析:

令\(x=123456\cdots787980\),则:

\[x\div88=x\div8\div11\quad\tag{1}\] \[x(mod8)\equiv980(mod8)\equiv4(mod8)\quad\tag{2}\] \[\begin{multline} x(mod11)\equiv\mbox{两位一截断求余求和}(mod11)\\ \equiv10(mod11)\quad\tag{3} \end{multline}\]

应用韩信点兵法求得最终余数76。

流程图

graph TD; A[x]-->B[对8求余]; A-->C[对11求余]; B-->D[韩信点兵]; C-->D; D-->E{76};

孙子定理(中国剩余定理)

设\(m_1,m_2,\cdots,m_k\mbox{是}k\)个两两互质的正整数,\(M=m_1m_2\cdots m_k,\quad M_i=\frac{M}{m_i}, i=1,2,\cdots k\),则同余式组

\[\begin{cases}\begin{gather}x\equiv b_1(mod m_1)\\x\equiv b_2(mod m_2)\\ \cdots\\x\equiv b_k(mod m_k)\end{gather}\end{cases}\]

的解是

\[x\equiv b_{1} M^{'}_{1}M_{1}+b_{2}M^{'}_{2}M_{2}+\cdots b_{k}M^{'}_{k}M_{k}(mod M)\]

其中

\[M^{'}_{i}M_{i}\equiv 1(mod m_i),(i=1,2,\cdots k)\]

解:

设\(x=123456\cdots787980\)

\[x\div88=x\div8\div11\] \[\because x(mod8)\equiv980(mod8)\equiv4(mod8)\\ \therefore x(mod8)\equiv4(mod8)\]

又\(123456\cdots787980\)对11求余可用两位截断法,即从右向左划分\(1\|23\|45\|67\|89\|10\|11\|12\|\cdots\|78\|79\|80\),分别除以11后各余数相加再对11求余

\[\begin{align}5\times1\\+6\times(10+0+1+2+3+\cdots+9)\\+(10+0+1+2+3)\\=351\end{align}\] \[351(mod11)\equiv10(mod11)\] \[\therefore x(mod11)\equiv10(mod11)\]

由此,本题转化为求解同余式组 \(\begin{cases}\begin{gather}x\equiv4(mod8)\\x\equiv10(mod11)\end{gather}\end{cases}\)

套用孙子定理,

\[M=88, M_1=88\div8=11,M_2=88\div11=8,\\\mbox{此处是关键} M^{'}_1=3,M^{'}_2=7\] \[x\equiv4\times11\times3+10\times8\times7(mod88)\] \[x\equiv692(mod88)\equiv76(mod88)\]

答:

余数为76。

本文共1501字。